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An analysis is made of the compression wave generated when a high-speed train enters a tunnel
with a #ared portal. Nonlinear steepening of the wavefront in a very long tunnel is responsible
for an intense, environmentally harmful, micro-pressure wave, which propagates as a pulse from
the distant tunnel exit when the compression wave arrives, with amplitude proportional to the
maximum gradient in the compression wavefront. The compression wave pro"le can be
determined analytically for train Mach numbers M satisfying M2@1, by regarding the local
#ow near the tunnel mouth during train entry as incompressible. In this paper, the in#uence of
tunnel portal #aring on the initial thickness of the compression wave is examined "rst in this
limit. The shape of the #ared portal is &&optimal'' when the pressure gradient across the front is
constant and an overall minimum, so that the pressure in the wavefront increases linearly. This
linear behaviour is shown to occur for a #ared portal extending a distance l into the tunnel
from the entrance plane (x"0) only when the tunnel cross-sectional area S(x) satis"es
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where x increases negatively with distance into the tunnel, A is the cross-sectional area in the
uniform section of the tunnel (x(!l), and A

E
is the tunnel entrance cross-section. The

optimum portal is achieved by adjusting the value of A/A
E

to make the pressure gradient
continuous, and a formula is derived for this ratio for tunnels of semi-circular cross-section. For
optimal #aring, the pressure rises linearly as the front of the train traverses the #ared section of
length l, and the thickness of the compression wavefront \l/M.

A formula is proposed for extrapolating these predictions to train Mach numbers as large as
0)4, which is expected to be typical of future high-speed rail operations. It is validated for the
special case of a circular cylindrical tunnel, for which an exact solution is known for arbitrary
subsonic Mach numbers, and by comparison with scale model experiments using trains of
various nose pro"les. ( 1999 Academic Press
1. INTRODUCTION

A TRAIN ENTERING A TUNNEL generates a compression wave that propagates into the tunnel at
the speed of sound. On reaching the distant tunnel exit the wave emerges as a pressure pulse,
the micro-pressure wave, whose amplitude and duration depend on train speed on entry, its
cross-sectional area relative to the tunnel, and on the tunnel length (Iida et al. 1996; Maeda
et al. 1993; Ozawa et al. 1991; Swarden & Wilson 1970; Ogawa & Fujii 1994a, 1996, 1997;
Howe 1998a, b; Mestreau et al. 1993). The amplitude of the compression wave is usually of
the order of 0)01 atm (\150 dB) for a train travelling at Mach numbers M exceeding about
0)2 (\250 kph), and the pressure rise occurs over a distance (the wavefront &thickness')
typically of order D/M\5 tunnel diameters D. The strength of the micro-pressure wave is
0889}9746/99/040481#18 $30.00 ( 1999 Academic Press
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proportional to the steepness of the compression wavefront at the tunnel exit, and for
tunnels longer than about 3 km with modern concrete slab tracks (o!ering little dissipation
to the propagating wave), nonlinear wave steepening can produce peak micro-pressure
wave amplitudes of 50 Pa (+128 dB) or more near the exit. This is comparable to the sonic
boom from a supersonic aircraft, and frequently causes structural damage and much
annoyance.

Nonlinear steepening is e!ectively suppressed by relaxation processes when the initial rise
time of the wave is large (Ozawa et al. 1991), and can therefore be forestalled by designing
the train nose pro"le and tunnel portal to make the initial thickness of the compression
wave as large as possible. A su$ciently &&slender'' nose pro"le has been found to reduce the
micro-pressure wave strength by about 3 dB (Iida et al. 1996; Maeda et al. 1993). Much
larger reductions are obtained, however, by modifying the tunnel entrance geometry. In the
case of adjacent, parallel tunnels, for example, the initial wave thickness is increased by
allowing high-pressure air produced by an entering train to #ow into the neighbouring
tunnel through a suitable vent close to the entrance. But, the most signi"cant attenuations
are currently achieved (in Japan) by the installation of an entrance &&hood''. This extends up
to 50 m ahead of the tunnel entrance, and produces a large increase in compression wave
thickness by venting high-pressure air through &&windows'' distributed along the hood walls.
A "vefold increase in wave thickness has been reported for a hood of length 49 m (Ozawa
et al. 1991).

However, tunnel entrance hoods tend to be unsightly and there is a corresponding need
to investigate alternative tunnel portal modi"cations for achieving comparable increases in
the compression wave rise time. Portal &&#aring'' has long been considered ideal for this
purpose (Ozawa et al. 1976; Vardy 1978; Ogawa & Fujii 1994b). The compression wave
thickness will necessarily be very large if the #aring is gradual, and extends su$ciently far
into the tunnel from the entrance plane, but may be impracticable if this requires the tunnel
cross-section at the entrance to be too large.

In this paper, the theory of compression wave generation is discussed for a train entering
a tunnel with a #ared entrance. The initial compression wave pro"le is determined in terms
of a Green's function tailored to the tunnel entrance geometry, and a distribution of
monopole sources that represent the displacement of #uid by the advancing train. This can
be done analytically for arbitrary portal geometry for train Mach numbers satisfying
M2@1 by the method of Howe (1998a). We show how these results can be extrapolated to
encompass the higher Mach numbers (\0)4) encountered in modern high-speed operations.
The extrapolation formula is justi"ed by comparison with exact analytical predictions and
with experiment for the special case of a &&tunnel'' formed by an un#anged circular cylinder.

The theory is applied to optimize the initial rise time when a section of the tunnel
entrance of length l is #ared. When l is prescribed, it is required to determine the functional
dependence on position of the #ared tunnel cross-section that maximizes the rise time and
produces a linear pressure increase across the compression wavefront. Thus, the maximum
wavefront thickness attainable by this means is \l/M. Nonlinearity would cause any other
initial wave pro"le to become &&rough'', with regions where the pressure gradient becomes
locally large, thereby favouring shock formation in a long tunnel. The optimum is shown to
be achieved when the cross-section in the #ared portal decreases inversely with distance into
the tunnel from an appropriately chosen inlet area.

The theory of compression wave generation is formulated in Section 2. Green's function
for a #ared portal is derived in Section 3 for the case where M2@1, and applied to determine
the shape of an optimally #ared portal. The extrapolation of predictions to higher Mach
numbers is then discussed (Section 4), including a comparison with experimental data of
Maeda et al. (1993). Numerical predictions are presented for Mach numbers extending up to
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0)4 for various model train nose pro"les that have been examined experimentally. The
theory determines the initial pro"le of the compression wave ahead of the train, immediately
after the interaction of the train nose with the portal. This pro"le can be used to de"ne
initial conditions for a nonlinear calculation of the subsequent propagation of the wave
along the tunnel, but this is not pursued here.

2. REPRESENTATION OF THE COMPRESSION WAVE

Consider a train travelling at constant speed ; in the negative x-direction into the #ared
entrance portal of a tunnel of semi-circular cross-section, with the origin O of the coordi-
nate axes (x, y, z) taken at ground level at the centre of the tunnel entrance plane (Figure 1).
An axial section of the tunnel extending a distance l into the tunnel from the entrance is
#ared, with variable tunnel cross-sectional area S (x), which satis"es
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That is, A and R are respectively the constant cross-sectional area and radius in the
uniform region x(!l, and A

E
and R

E
are the corresponding values in the tunnel entrance

plane.
The pro"led nose (of length ¸) of the train is assumed to be su$ciently streamlined that

the in#uence of #ow separation on compression wave formation may be ignored. The
displacement of #uid by the advancing train may then be represented by replacing the train
by a system of constant strength volume sources (Howe 1998a, b) distributed within the
envelope of the train, that translates with the train at speed ;. The distribution of these
sources at time t will be denoted by q(x#;t, y, z), where q(x) is de"ned to be the source
distribution at t"0, when the front of the train will be supposed to pierce the tunnel
entrance plane. The motion produced by the sources is irrotational, and can be expressed in
terms of a velocity potential u (x, t) determined by

A
1

c2
0

L2
Lt2

!+2Bu"!q (x#;t, y, z), (2.2)

where c
0
is the speed of sound. u is required to have outgoing wave behavior and satisfy the

condition Lu/Lx
n
"0 of vanishing normal velocity on the surfaces S consisting of the rigid
Figure 1. Schematic pro"le of #ared tunnel entrance of length l.
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sections of the tunnel walls and the ground plane y"0. Observe that, although the
left-hand side of equation (2.2) is linear in u, the motion described by the velocity potential
in the neighbourhood of the train is fully nonlinear, and represents the massive displace-
ment and compression of the #uid by the train on approaching and entering the tunnel.
However, within the tunnel, ahead of the train, where the motion is dominated by the
advancing compression wave of characteristic amplitude \0)01 atmos, the unsteady
motion is well approximated by the linearized equations of motion, at least before wave
steepening becomes important.

The solution of equation (2.2) can be expressed in the form

u (x, t)"!PPG(x, x@, t!q)q (x@#;q, y@, z@) d3x@ dq, (2.3)

where Green's function G(x, x@, t!q) has vanishing normal derivative LG/Lx@
n

on S, and
satis"es
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!+@2BG"d (x!x@)d(t!q), G"0 for q't, (2.4)

where +@2 is the Laplacian with respect to x@ (Morse & Feshbach 1953). The integrations in
equation (2.3) are over all time q and the #uid volume.

A closed-form expression for G(x, x@, t!q) is available only for the highly simpli"ed case
of a tunnel modelled as a semi-in"nite, thin-walled, un#anged cylinder of semi-circular
cross-section (Howe 1998b). For train Mach numbers M less than about 0)2, the thickness
of the compression wavefront \d/MAd, where d is a characteristic length of the tunnel
portal: d\2R for a cylindrical tunnel of radius R. In these circumstances, when the
wavelength of compressible motions greatly exceeds the tunnel diameter, G(x, x@; t!q) can
be approximated by the compact Green's function, which was shown by Howe (1998a) to be
given by

G(x, x@; t!q)+
c
0

2A
MH(t!q!D/*(x)!/*(x@)D/c

0
)!H(t!q#(/*(x)#/*(x@))/c

0
)N, (2.5)

where /*(x) is the velocity potential of an hypothetical incompressible #ow out of the tunnel
portal, normalized such that

/*(x)+x!l@ as xP!R inside the tunnel,
+O (1/DxD) as DxDPR outside the tunnel, (2.6)

and H(x), "0, 1 according as xk0, is the Heaviside step function.
These formulae are applicable for any tunnel whose interior cross-sectional area is

ultimately constant and equal to A. The length l@\JA is the &&end-correction'' of the
portal (+0)61R for the semi-circular, cylindrical tunnel of radius R; Rayleigh 1926); the
precise value is dependent on details of portal geometry. /*(x) varies continuously through
the tunnel entrance, increasing from a large negative value when x is negative and large

within the tunnel, to zero as DxDPR outside the tunnel. It is numerically of order JA in the
neighbourhood of the portal, where its rate of change depends on the entrance shape and its
environment. The approximation (2.5) is uniformly valid when regarded as a function of
either x or x@ provided at least one of these points lies within the tunnel at a large distance
compared to the tunnel diameter.

The solution (2.3) determines the initial compression wave pro"le, prior to the onset of
nonlinear steepening, and is valid several tunnel diameters ahead of the train, during and
just after tunnel entry. At such points the disturbed motion is small, and the perturbation
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pressure p can be calculated from the linearized Bernoulli equation p"!o
0
Lu/Lt, where

o
0
is the undisturbed air density. This yields
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2A P Mq(x@#;[t]!M/*(x@), y@, z@)!q(x@#;[t]#M/*(x@), y@, z@)N d3x@, (2.7)

where [t]"t#/*(x)/c
0
+t#(x!l@)/c

0
is the retarded time.

Here it is supposed that the observation point x is su$ciently far within the tunnel that
/*(x)+x!l@, but that nonlinear steepening has not become signi"cant. The subsequent
propagation of the wave within a long tunnel could be calculated by using equation (2.7) to
de"ne the initial conditions for a nonlinear theory.

The source distribution q is nonzero only in the vicinities of the nose and tail of the train,
where its cross-sectional area is changing. The compression wave is generated as the nose
enters the tunnel, and for the purpose of calculating the contribution from the nose, the
length of the train may be assumed to be so large that the rear end can be ignored. During
the formation of the wave, and provided the train Mach number is small enough that terms
\O(M2) are negligible, the term M/*(x@) in the arguments of q in equation (2.7) is small, and

p+p(x, t)"
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0
;

A P/*(x@)
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Lx@
(x@#;[t], y@, z@) d3x@

"

o
0
;
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L/*

Lx@
(x@) d3x@ (2.8)

where the second line follows by integration by parts, and by recalling that /*(x@)P0
outside the tunnel.

Predictions of this formula for a cylindrical, thin-walled tunnel have been compared
(Howe 1998a) with data of Maeda et al. (1993) derived from model scale experiments
involving the projection of wire-guided model trains into a circular cylindrical tube at
M+0)19 when A

0
/A+0)116, where A

0
is the uniform cross-sectional area of the train to

the rear of the pro"led nose. Good agreement with experiment was obtained when the
monopole distribution q (x) was approximated by the line source
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where A
T
(x) is the cross-sectional area of the train at distance x from the nose, so that

A
T
(¸),A

0
, and the ground level line y"0, z"z

T
lies in the vertical plane of symmetry of

the train. In this case, equation (2.8) becomes

p(x, t)+
o
0
;2A

0
A PQ(x@#;[t])

L/*

Lx@
(x@, 0, z

T
) dx@, M2@1. (2.10)

The source density Q (x@#;[t]) is nonzero only in the neighbourhood of x@\!;[t] of the

retarded position of the train nose. But, L/*/Lx@P1 when !x@AJA within the tunnel, so
that the total pressure rise across the wave predicted by (2.10) is

p\
o
0
;2A

0
A

, for ;[t]AJA, M2@1. (2.11)

When the train nose has passed into the tunnel, and no longer interacts with the portal, the
pressure rise just ahead of the train is given exactly by the Green's function (2.5), wherein
now

/*(x)+x!l@, /*(x@)+x@!l@.
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The Mach number restriction on (2.5) can be relaxed provided that only plane waves can
propagate in the tunnel (i.e., the wavefront thickness is much larger than the tunnel
diameter). In this case equation (2.7) supplies, without approximation, the constant pressure
ahead of the train (behind the wavefront and before the rear end of the train enters the
tunnel) in the form

p"
o
0
;2

A(1!M2) Pq (x@) d3x@"
o
0
;2A

0
A(1!M2)

, for ;[t]AJA. (2.12)

A comparison of this result with equation (2.11) suggests that predictions of the low Mach
number formula (2.10) can be extended to "nite Mach numbers by writing

p (x, t)+
o
0
;2A

0
(1!M2)A PQ(x@#;[t])
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Lx@
(x@, 0, z

T
) dx@. (2.13)

The validity of this extrapolation formula is discussed below in Section 4.
An overall impression of the in#uence of tunnel portal geometry on the compression

wave pro"le is obtained by considering the special case of a long train with a pro"led nose
whose length ¸ tends to zero. For a &snub' nosed train of this kind the source distribution
q(x) of equation (2.9) reduces to a single point source, because Q(x),(1/A

0
)LA

T
/LxPd (x)

as ¸P0. The compression wave pressure at low Mach numbers is therefore given by (2.10)
by setting Q(x@#;[t])"d (x@#;[t]), which yields
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x{/~U*t+

, M2@1. (2.14)

3. THE FLARED PORTAL WHEN M2@1

3.1. EXACT CALCULATION OF /*(x)
The function /*(x) that determines the compression wave in equations (2.10) and (2.13) is
the solution of Laplace's equation satisfying conditions (2.6), and represents an irrotational
#ow from the tunnel portal that has unit speed in the uniform section of the tunnel. By
introducing the image of the tunnel in the ground plane y"0, the calculation of /*(x) is
seen to be equivalent to determining irrotational #ow from an axisymmetric duct. Indeed,
the original problem in Figure 1 of a train entering a tunnel is mathematically the same as
that of the train plus its image in the ground plane (y"0) entering the duct [cf. Figure 3(a),
below].

The following exact representation of /*(x) is available when the duct consists of an
un#anged, semi-in"nite circular cylinder of radius R

0
(Howe 1998a)

/*(x),/*(x, r), r"Jy2#z2, (3.1)
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0
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1
are modi"ed Bessel functions, and the coordinate origin is in the exit plane of

the cylinder.
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The Stokes' stream function t*(x),t*(x, r), that assumes constant values on the
axisymmetric stream surfaces of the hypothetical #ow from the cylinder, is determined in
terms of /* by (Landau & Lifshitz 1987)

L/*

Lx
"

1

r

Lt*

Lr
,

L/*

Lr
"!

1

r

Lt*

Lx
.

Figure 2 depicts the stream surface pro"les for several constant values of (*"2nt*/
nR2

0
,2t*/R2

0
. These values represent the fraction of the total volume #ux from the duct

between the stream surface and the x-axis. Any one of these surfaces (*"C, say (where
C is a constant between zero and 1) can be replaced by a rigid boundary, and the velocity
potential /* may then be interpreted as the potential of #ow through a &&conically''
divergent nozzle whose uniform, asymptotic cross-section as x becomes large and negative

is A"CnR2
0
, corresponding to a uniform radius R"R

0
JC.

The stream surface for C+0)507 de"nes the boundary of a #ared portal with an in"nite
#ange, as illustrated in Figure 3(a) (for which R+0)71R

0
). The corresponding compression

wave pressure and pressure &&gradient'' Lp/Lt for a snub nosed train modelled by a point
source are determined by equation (2.14), where /* is given by equation (3.2), and are
plotted in Figure 3(b) as functions of the nondimensional retarded time ;[t]/R when the
source travels along the x-axis. Note that [t]"t#(x!l@)/c

0
, where x is measured from an

origin O in the plane of the tunnel #ange (which does not coincide with the entrance plane of
the un#anged cylinder of Figure 2). The dotted curve is discussed in Section 3.2. The
in#uence of #aring in this case can be assessed by comparison with the corresponding
Figure 2. Pro"les of the stream surfaces (*"2t*/R2
0
" constant, for uniform potential #ow from a circular

cylindrical duct of radius R
0
.



Figure 3. (a) Axisymmetric #anged portal de"ned by the stream surface (*"0)507 of Figure 2. (b) Nondimen-
sional pressure p/(o

0
;2A

0
/A) and pressure &&gradient'' (Lp/Lt)/(o

0
;3A

0
/AR) for a snub-nosed train when M2@1;

the dotted curve is discussed at the end of Section 3.2. (c) Corresponding pressure and pressure gradient for
a uniform (un#anged) duct entrance of radius R.
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pressure and pressure gradient depicted in Figure 3(c) for the un#anged circular cylinder
(corresponding to C"1 and R"R

0
), where the absence of #ange and the presence of the

sharp edged opening produce a compression wave whose thickness is about R/M smaller,
where R is the common internal radius of both tunnels.
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3.2. APPROXIMATE CALCULATION OF /*(x)

Consider next a #ared axisymmetric duct whose cross-sectional area, 2S (x) (Figure 4)
changes slowly over distances of the order of the duct radius. The axial velocity L/*(x)/Lx is
approximately constant over any cross-section, and Laplace's equation for /* reduces to
the ordinary di!erential equation (Landau & Lifshitz 1987)

1

S (x)

L
Lx AS (x)

L/*

Lx B"0, x(0. (3.3)

The solution satisfying equation (2.6) is readily found in the form

/*(x)"AP
x

0

dm
S (m)

#a, x(0, (3.4)

where a is a constant, in terms of which the end-correction is given by

l@"!a#P
0

~=
A
A

S (m)
!1B dm. (3.5)

The value of a depends on the behaviour of /*(x) outside the tunnel portal (x'0). For the
purpose of this calculation, it will be assumed that the duct terminates in an in"nite -ange
(see Figure 4), in which case the potential in the exterior region is given by (Morse
& Feshbach 1953)

/*(x)"!

1

2n PA
E

u (y@, z@) dy@dz@

J(x2#(y!y@)2#(z!z@)2
, x'0, (3.6)

where the integration is over the duct exit. In this formula,

u (y, z)"u
o
,A

L/*

Lx B
x/0

, (3.7)
Figure 4. Axisymmetric #ared portal with in"nite #ange.
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which, according to equation (3.4), is constant and equal to A/A
E

over the duct exit. Then,
on the axis of symmetry,

/*(x)"!

AR

A
E
CA

A
E

A
#

x2

R2B
1@2

!

x

RD, x'0, (3.8)

and continuity supplies

a"!RS
A

A
E

. (3.9)

The integral de"nition of /*(x) outside the tunnel can be used to evaluate /*(x) everywhere
in x'0, but the general formula will not be needed in the present discussion, where
attention will be con"ned to trains travelling along the axis of symmetry.

The validity of the approximation (3.4) for /* can be investigated by considering "rst the
#ared portal illustrated in Figure 5(a). The duct wall to the left of the exit plane corresponds
to that member of the family of stream surfaces in Figure 2 for which (*"0)06, and the
location of the exit plane (x"0) has been adjusted to make A/A

E
"0)06 (so that R

E
"R

0
,

and R/R
E
+0)25). The solid curves in Figure 5(b) represent the pressure and pressure

gradient calculated from equation (2.14) during the time in which a train modelled by
Figure 5. (a) Axisymmetric portal determined by the stream surface (*"0)06 in Figure 2. (b) Nondimensional
pressure p/(o

0
;2A

0
/A) and pressure &&gradient'' (Lp/Lt)/(o

0
;3A

0
/AR) for a point source entering the tunnel when

M2@1. The dotted curve is the pressure calculated using approximation (3.4).
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a point source is within the #ared section and translates along the axis of symmetry, as in
Section 3.1, when /*(x) is given by the exact formula (3.2) for #ow through a conical nozzle.

The dotted curve in Figure 5(b) is the pressure determined for the same time interval by
the approximation (3.4) for /*, which, from eqution (2.14) gives the pressure in the form

p(x, t)"
o
0
;2A

0
S (!;[t])

, for ;[t]/R'0, (3.10)

where 2S(x) is the cross-sectional area of the stream tube (*"0)06 at distance DxD into the
tunnel. The agreement between the exact and approximate predictions is excellent.

However, there is a substantial error in applying equation (3.4) to the #anged portal of
Figure 3(a) [which yields the dotted curve in Figure 3(b)]. The approximation is invalid at
distances less than about 0)64R from the exit plane, so that the prediction (3.10) is correct
only for;[t]/R greater than about 0)64. The dotted curve in Figure 3(b) has been estimated
for ;[t]/R(0)64 by applying the piston approximation (3.8) in x'!0)64R, where 2A

E
is the portal cross-section at x"!0)64R.

3.3. OPTIMAL FLARING WHEN M2@1

To maximize the initial compression wave rise time the duct cross-section must necessarily
vary slowly with axial distance x, and the approximation (3.4) should therefore be applic-
able. For a snub-nosed train, modelled by a point source, the compression wave pro"le is
therefore given by equation (3.10) at retarded times when the train is within the #ared
section, where most of the pressure rise occurs. The retarded cross section S (!;[t])
decreases from A

E
to A during this time, so that the pressure rises from o

0
;2A

0
/A

E
when

the front of the train (the source) is just entering the tunnel, to its "nal value of o
0
;2A

0
/A,

when the front enters the uniform section of the tunnel. This increase will occur uniformly if
the inverse cross-section 1/S(!;[t]) increases linearly with time, that is, provided the
tunnel #aring is de"ned by

S (x)

A
"

1

[A/A
E
!(x/l) (1!A/A

E
)]

, !l(x(0. (3.11)

The tunnel radius r (x)"RJS(x)/A, and the pro"les shown in Figures 1 and 4 are
determined by this formula when l/R"10 and A/A

E
"0)1.

However, for an arbitrarily chosen value of A/A
E

the retarded value of the predicted
pressure gradient will generally be discontinuous at the entrance plane (;[t]/R"0) where
the de"nition of /*(x) changes from equation (3.4) to (3.8). Thus, when the length l of the
#ared section has been prescribed, the shape of the optimally #ared portal is obtained by
adjusting the value of A/A

E
in equation (3.11) to ensure that the pressure varies smoothly

at;[t]/R"0. This is equivalent to requiring L2/*(x, 0, 0) /Lx2 to be continuous across the
tunnel entrance plane x"0. By using the formulae (3.4), (3.8), which are respectively valid
for x k 0, this condition is easily seen to require that

A
A

A
E
B
3@2

"

R

l A1!
A

A
E
B, (3.12)

i.e. (for R/l(3J3/2+2)6)
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#A1!S1!A
2R

3J3lB
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D
2
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According to this formula, A/A
E

increases smoothly from zero to 3
4

as R/l increases from
zero to 2)6.

For the particular case in which l/R"10, equation (3.13) gives A/A
E
+0)187, so that

the tunnel entrance radius R
E
+2)3R. The corresponding calculated linear pressure rise

across the wavefront is illustrated in Figure 6 as a function of ;[t]/R, the nondimensional
retarded position of the front of the train (the point source). The pressure for ;[t]/R(0,
before the train enters the #ared portal, is calculated from (2.14) (with z

T
"0) by taking

/*(x) to be given by the piston approximation (3.8). The pressure increases uniformly as the
source traverses the #ared section of length 10R, producing a compression wave thickness
\10R/MAR. The &&pressure gradient'' Lp/Lt (also plotted in the "gure) rises to a small and
constant value as the train enters the #ared portal.

The optimal prediction of Figure 6 should be contrasted with the prediction in Figure 5,
where a similar increase in wave thickness is achieved using a &&conically'' #ared portal. The
rise in pressure across the wavefront is not linear for the conical portal; the pressure
gradient Lp/Lt has a distinct maximum, where the slope of the wavefront is about twice that
for the optimally #ared portal of roughly the same e!ective length l. Furthermore, the
somewhat more modest improvements in the compression wave pro"le achieved by conical

#aring require the exit radius R
E
"R/J0)06+4)1R, nearly twice that of the optimally

#ared portal.

4. PREDICTIONS AT FINITE MACH NUMBER

4.1. EXTRAPOLATION TO HIGHER MACH NUMBERS

For a snub-nosed train (equivalent to a point source) entering an un#anged circular
cylindrical tunnel of radius R along the axis of symmetry, the peak pressure gradient at
mach number M was shown by Howe (1998b) to be given by

A
Lp

LtB
.!9

"A
o
0
;3A

0
RA B

0)64#1)3M6

1!M2
, 0(M(0)6. (4.1)
Figure 6. Nondimensional pressure p/(o
0
;2A

0
/A) and pressure &&gradient'' (Lp/Lt)/(o

0
;3A

0
/AR) for a snub-

nosed train entering an optimally #ared portal of the type shown in Figure 4 when l/R"10, A/A
E
"0)187

and M2@1.
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This formula was derived from equation (2.3) by using the exact Green's function [solution
of (2.4)] for the un#anged circular cylinder [equation (9) of Howe 1998b]. The error
incurred in omitting the term in M6 is less than 1% when M40)4.

Exact predictions for this case of p and Lp/Lt as functions of the retarded time;[t]/R"0
for M"0)1, 0)2, 0)3, 0)4 are displayed in Figure 7(a). The corresponding predictions
of the extrapolation formula (2.13) for the same Mach numbers are shown in Figure 7(b),
for which

p(x, t)"
o
0
;2A

0
A(1!M2) A

L/*

Lx@
(x@, 0, 0)B

x{/~U*t+

, (4.2)

where L/*(x)/Lx is given by equation (3.2) with R
0
"R. The exact and approximate results

di!er by a small phase shift; when this is removed, the corresponding pressure and pressure
gradient curves are in excellent accord. For the purpose of optimizing portal design, small
phase errors of this kind are of no practical signi"cance.
Figure 7. Nondimensional pressure p/(o
0
;2A

0
/A) and pressure &&gradient'' (Lp/Lt)/(o

0
;3A

0
/AR) for a snub-

nosed train entering a circular cylindrical tunnel of radius R at di!erent Mach numbers: (a) calculated by Howe
(1998b) using the exact Green's function; (b) calculated from the extrapolation formula (4.2) using (3.2).
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Indeed such discrepancies are hardly noticeable when predictions of these formulae are
compared with experiment. This is well illustrated by the data of Maeda et al. (1993),
obtained using axisymmetric, wire-guided model &&trains'' projected along the axis of
a 7 m long, un#anged circular cylinder of radius R"0)0735 m. The nose pro"les (of length
¸) included the cone, and the paraboloid and ellipsoid of revolution [see column (a) of
Figure 8] with respective cross-sectional areas

A
T
(x)

A
0

"G
x2

¸2
,

x

¸

,
x

¸A2!
x

¸ B, 0(x(¸,

1, x5¸,
. (4.3)

where x is measured from the tip of the nose. The corresponding source densities Q of
equation (2.9) are

Q(x)"G
2x

¸2
,

1

¸

,
2

¸ A1!
x

¸B, 0(x(¸,

0, elsewhere,
. (4.4)

and are plotted in column (b) of Figure 8.
The data from these experiments plotted in Figure 9 are values of the pressure gradient

Lp/Lt measured within the cylinder at 1 m from the entrance plane. The trains had aspect
ratio h/¸"0)2, where h is the uniform cross-sectional radius of a train to the rear of the
nose (so that A

0
"nh2) and area ratio A

0
/A"0)116, and were projected axisymmetrically
Figure 8. (a) Train pro"les and (b) source distributions for the axisymmetric experimental trains.
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into the cylinder at ;"230 km/h (M"0)188). The solid curves in Figure 9(a) represent
predictions of equations (2.3) and (2.9) using the exact Green's function and the source
densities (4.4). The predicted peak values of Lp/Lt are just under 5% smaller than the
corresponding measurements. In plotting these curves, the retarded time origin has been
shifted so that the peaks for theory and experiment coincide for the ellipsoid. This adjust-
ment gives excellent overall agreement for all three cases.

Figure 9(b) shows the same comparison with experiment of predictions of the extrapola-
tion formula (2.13) when the velocity potential /* is given by equation (3.2). The evident
e!ective agreement of the exact and approximate theories lends strong support to the
validity of the extrapolation procedure for any tunnel portal geometry provided the
compression wave thickness is large compared to the relevant length l that characterizes
the extent of the variable section of the tunnel portal. When this latter condition is satis"ed
the physical basis of the compact approximation is the same as it is for the circular
cylindrical portal.
Figure 9. Comparison of the predicted pressure &&gradient'' Lp/Lt (solid curves) with measurements of Maeda
et al. (1993) for axisymmetric model trains entering a circular cylindrical &tunnel' at M"0)188: (a) calculated
by Howe (1998b) using the exact Green's function; (b) calculated from the extrapolation formula (2.13) using

equation (3.2).
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4.2. THE OPTIMALLY FLARED PORTAL

Consider the application of the extrapolation formula (2.13) to a #ared portal, when /*(x) is
de"ned by equation (3.4) and the piston approximation (3.8). Figure 10(a) illustrates typical
predictions of the compression wave pressure and pressure gradient for the cone, para-
boloid and ellipsoid nose pro"les de"ned in equation (4.3) (see Figure 8) for
M"0)4, ¸/R"2, for a #ared section of length l"10R, area ratio A/A

E
"0)187, when
Figure 10. Nondimensional pressure p/(o
0
;2A

0
/A) and pressure &&gradient'' (Lp/Lt) /(o

0
;3A

0
/AR) for the

axisymmetric model trains of Figure 8 for M"0)4, ¸/R"2: (a) optimally #ared portal with
l/R"10, A/A

E
"0)187; (b), (c) corresponding pro"les for a tunnel in the form of an un#anged circular cylindrical

duct of radius R.
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the tunnel portal is optimally #ared in accordance with equations (3.11) and (3.13). The
predicted pressure pro"les are smooth everywhere, in contrast to the prediction in Figure 6
for a snub-nosed train. This is because the source density Q is now distributed over the "nite
length ¸ of the pro"led nose. All of the pressure curves are qualitatively similar: each is
dominated by a long interval 0(;[t]/R(12 of essentially linear growth occurring as the
nose passes through the #ared section, such that the compression wave thickness
\12R/M"30R.

Figure 10(b, c) illustrates the predicted pressure and pressure gradient pro"les for a non-
#ared, un#anged cylindrical tunnel [taken from Howe's (1998b) paper, which made use of
the exact Green's function for the cylinder] at the same Mach number. The wave thickness
is here \3R/M"7)5R, and the maximum pressure gradient is about "ve times larger than
for the #ared portal.

5. CONCLUSION

The structure of the compression wave generated by a high-speed train entering a tunnel
depends critically on tunnel portal geometry. The wave amplitude increases approximately
as M2 for a train travelling at Mach number M, and the initial compression wave thickness
decreases like 1/M; both e!ects tend to exacerbate nonlinear wave steepening in a long
tunnel, and the environmental damage produced by the pulsatile radiation of the associated
micropressure wave from the distant tunnel exit. The initial wave thickness is increased
when the tunnel entrance portal is #ared. Flaring produces an optimal compression
waveform when the pressure rises linearly across the wavefront, so that the pressure
gradient is e!ectively constant (and an overall minimum) within the wavefront. This has,
been shown to occur when the tunnel cross-sectional area varies according to equation
(3.11) in the #ared section, and when the area ratio A/A

E
is determined by equation (3.13).

In this case, the wave thickness \l/M, where l is the length of the #ared section.
Detailed analyses have been made for small Mach numbers (M2@1) , and an extrapola-

tion formula has been proposed that extends predictions to train Mach numbers as large as
0)4. The extrapolation formula has been justi"ed by comparison with exact theoretical
results for a tunnel consisting of an un#anged, circular cylinder, and by comparison with
model scale experiments for this case performed by Maeda et al. (1993).
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